NER in Legal Domain

Abstract

Named Entity Recognition(NER) is an important topic in NLP, and it is the foundation for many advanced NLP topics. Many mature tools have been implemented (e.g. spaCy, Stanford CoreNLP), but their performance is quite limited in specific domains.

Cooperating with INTELLLEX (A Tech Start-up For Law), we are focusing on a NER in legal domain. We aim to increase precision of existing Named Entity(NE) types(e.g. Person, Location, Org), and train new NE types for the feature of legal domain(e.g. Law).

The NER we’re building will be the foundation of many advanced NLP topics, like Relation Extraction and Topic Prediction, which will contribute to a better legal search engine!

Members