Domain Adaptation and Training Data Acquisition in Wide-Coverage Word Sense Disambiguation and its Application to Information Retrieval

Zhi Zhong
Supervisor: Prof. Hwee Tou Ng

Department of Computer Science
National University of Singapore
Introduction

• *Word Sense Disambiguation (WSD)*: the task of identifying the correct sense/meaning of a word in a given context.
 – A basic semantic understanding task at the lexical level
 – An intermediate task for many other natural language processing (NLP) tasks

• Approaches
 – Knowledge based approaches (Lesk, 1986)
 – Unsupervised learning approaches (Pham et al., 2005)
 – Supervised learning approaches (Lee and Ng, 2002)
Introduction

Difficulties in Supervised WSD

• Low accuracy
 – Fine-grained vs. Coarse-grained sense inventory
• Lack of sense-annotated data
 – Reusing existing training data (Kohomban and Lee, 2005; Ando, 2006)
 – Generating training data from raw corpora (Mihalcea, 2002; Niu et al., 2005)
 – Active learning (Ng, 1997; Chan and Ng, 2007)
 – Multilingual resources (Resnik and Yarowsky, 1997; Ng et al., 2003; Chan and Ng, 2005a)
• Domain adaptation problem
 – Predicting sense distribution (McCarthey et al., 2004; Chan and Ng, 2005b; Chan and Ng, 2006)
 – Using active learning to pick good target domain instances (Chan and Ng, 2007)
Introduction

Applications

• Machine Translation
 – Selecting the correct translations for ambiguous words (Chan et al, 2007; Carpuat and Wu, 2007; Chiang et al., 2009)

• Information Retrieval
 – Disambiguating terms in queries and documents (Voorhees, 1993; Schutze and Pedersen, 1995; Stokoe et al., 2003; Kim et al., 2004)
 – Expansion of queries and documents (Voorhees, 1994; Liu et al., 2004; Cao, 2005; Fang, 2008; Agirre et al., 2010)

• Text Classification
 – Representing documents as a bag of senses (Kehagias et al., 2003; Bloehdorn and Hotho, 2004)

• Subjectivity Analysis
 – Many words have both subjective and objective senses (Wiebe and Mihalcea, 2006; Akkaya et al., 2009; Balamurali et al., 2011)
Contributions

• An open source supervised WSD system, IMS (It Makes Sense)
• Domain Adaptation, combining the feature augmentation technique with active learning
• Extracting sense annotated examples from parallel corpora without extra human efforts
• Improving information retrieval by incorporating word senses
Outline

• Introduction
• An open source word sense disambiguation system
• Domain adaptation for word sense disambiguation
• Automatic extraction of training data from parallel corpora
• Word sense disambiguation for information retrieval
• Conclusion
An open source word sense disambiguation system

• Motivations:
 – Few publicly available open source WSD systems
 – WSD is required as a component by other applications

• IMS (It Makes Sense):
 – A supervised learning system for WSD
 – Open source
 – Provide an extensible and flexible platform for researchers interested in WSD
 – An English all-words WSD component for other NLP tasks
System Description

Input Document

Preprocessing
• Sentence splitter
• Tokenizer
• POS Tagger
• Lemmatizer

Instance Extraction
• POS Feature Extractor
• Surrounding Word Extractor
• Local Collocation Extractor

Classification
• Machine Learning Toolkit

Knowledge Sources: (Lee and Ng, 2002)
• Part of Speech: P_{-3}, P_{-2}, P_{-1}, P_{0}, P_{1}, P_{2}, P_{3}
• Surrounding Words
• Local Collocations: C_{-1,-1}, C_{1,1}, C_{-2,-1}, C_{2,1}, C_{-1,1}, C_{1,2}, C_{-2,-2}, C_{2,2}, C_{-1,1}, C_{1,2}, C_{-2,1}, C_{2,2}, C_{1,3}

One model for each word type
Support Liblinear, LibSVM, MaxEnt, Weka toolkit
Sense-annotated Data Set

• Sense-annotated corpus
 – SEMCOR (Miller et al., 1994)
 – The DSO corpus (Ng and Lee, 1996)

• Sense-annotated data extracted from parallel corpora (Chan and Ng, 2005a)
 – 6 English-Chinese parallel corpora
 – The top 60 most frequently occurring polysemous content word in Brown Corpus

<table>
<thead>
<tr>
<th>POS</th>
<th>Noun</th>
<th>Verb</th>
<th>Adj</th>
<th>Adv</th>
</tr>
</thead>
<tbody>
<tr>
<td># of types</td>
<td>11,445</td>
<td>4,705</td>
<td>5,129</td>
<td>28</td>
</tr>
</tbody>
</table>
Experiments

<table>
<thead>
<tr>
<th>Task</th>
<th>SE2</th>
<th>SE3</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS (Liblinear)</td>
<td>65.3%</td>
<td>72.6%</td>
</tr>
<tr>
<td>IMS (WEKA)</td>
<td>65.0%</td>
<td>72.0%</td>
</tr>
<tr>
<td>IMS (MaxEnt)</td>
<td>62.2%</td>
<td>69.4%</td>
</tr>
<tr>
<td>Rank 1</td>
<td>64.2%</td>
<td>72.9%</td>
</tr>
<tr>
<td>Rank 2</td>
<td>63.8%</td>
<td>72.6%</td>
</tr>
<tr>
<td>Rank 3</td>
<td>62.9%</td>
<td>72.4%</td>
</tr>
<tr>
<td>MFS</td>
<td>47.6%</td>
<td>55.2%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Task</th>
<th>Italian</th>
<th>Spanish</th>
<th>Chinese</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS (Liblinear)</td>
<td>56.9%</td>
<td>87.3%</td>
<td>62.3%</td>
</tr>
<tr>
<td>IMS (WEKA)</td>
<td>57.1%</td>
<td>87.2%</td>
<td>63.3%</td>
</tr>
<tr>
<td>IMS (MaxEnt)</td>
<td>56.6%</td>
<td>84.1%</td>
<td>62.5%</td>
</tr>
<tr>
<td>Rank 1</td>
<td>53.1%</td>
<td>84.2%</td>
<td>60.4%</td>
</tr>
<tr>
<td>Rank 2</td>
<td>51.5%</td>
<td>84.0%</td>
<td>-</td>
</tr>
<tr>
<td>Rank 3</td>
<td>49.8%</td>
<td>82.5%</td>
<td>-</td>
</tr>
<tr>
<td>MFS</td>
<td>18.3%</td>
<td>67.7%</td>
<td>28.5%</td>
</tr>
</tbody>
</table>

English Lexical-sample tasks

SensEval-3 Lexical-sample tasks
Experiments

<table>
<thead>
<tr>
<th>Task</th>
<th>SensEval-2 Fine-grained</th>
<th>SensEval-3 Fine-grained</th>
<th>SemEval-07 Fine-grained</th>
<th>SemEval-07 coarse-grained</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS (Liblinear)</td>
<td>68.2%</td>
<td>67.6%</td>
<td>58.3%</td>
<td>82.6%</td>
</tr>
<tr>
<td>IMS (WEKA)</td>
<td>67.8%</td>
<td>67.5%</td>
<td>59.1%</td>
<td>82.2%</td>
</tr>
<tr>
<td>IMS (MaxEnt)</td>
<td>67.5%</td>
<td>67.4%</td>
<td>58.9%</td>
<td>82.0%</td>
</tr>
<tr>
<td>Rank 1</td>
<td>69.0%</td>
<td>65.2%</td>
<td>59.1%</td>
<td>82.5%</td>
</tr>
<tr>
<td>Rank 2</td>
<td>63.6%</td>
<td>64.6%</td>
<td>58.7%</td>
<td>81.6%</td>
</tr>
<tr>
<td>Rank 3</td>
<td>61.8%</td>
<td>64.1%</td>
<td>58.3%</td>
<td>81.5%</td>
</tr>
<tr>
<td>WNs1</td>
<td>61.9%</td>
<td>62.4%</td>
<td>51.4%</td>
<td>78.9%</td>
</tr>
</tbody>
</table>

SensEval/SemEval fine-grained and coarse-grained all-words tasks
Outline

• Introduction
• An open source word sense disambiguation system
• Domain adaptation for word sense disambiguation
• Automatic extraction of training data from parallel corpora
• Word sense disambiguation for information retrieval
• Conclusion
Domain adaptation for word sense disambiguation

- **Target-domain Test Data**
 - OntoNotes WSJ section 23 (Hovy et al., 2006)

- **Target-domain Training Data**
 - OntoNotes WSJ sections 02-21
 - Accuracy of **89.1%**

- **Source-domain Training Data**
 - SEMCOR (mapped from WordNet sense-inventory to OntoNotes sense-inventory)
 - Accuracy of **76.2%**

- **Suffer a substantial decrease in accuracy.**
 - General problem for many NLP tasks (Daume III and Marcu, 2006)
 - Domain adaptation is needed

<table>
<thead>
<tr>
<th>Section</th>
<th># of word-types</th>
<th># of instances</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Individual</td>
<td>Cumulative</td>
</tr>
<tr>
<td>02</td>
<td>248</td>
<td>425</td>
</tr>
<tr>
<td>03</td>
<td>79</td>
<td>107</td>
</tr>
<tr>
<td>04</td>
<td>186</td>
<td>389</td>
</tr>
<tr>
<td>05</td>
<td>287</td>
<td>625</td>
</tr>
<tr>
<td>…</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>288</td>
<td>536</td>
</tr>
<tr>
<td>21</td>
<td>262</td>
<td>470</td>
</tr>
<tr>
<td>23</td>
<td>685</td>
<td>3,755</td>
</tr>
</tbody>
</table>
Combine SEMCOR and OntoNotes

WSD Accuracy (%)

Section Numbers

ON SC+ON

National University of Singapore
The Feature Augmentation Technique

• Daume III 2007
• For an instance \(x \), suppose \(\Phi(x) \) is the original feature vector of \(x \). The augmented feature vector of \(x \) is:

\[
\Phi'(x) = \begin{cases}
\langle \Phi(x), \Phi(x), 0 \rangle & \text{if } x \in D_s \\
\langle \Phi(x), 0, \Phi(x) \rangle & \text{if } x \in D_t
\end{cases}
\]

Where 0 is a zero vector of length \(|\Phi(x)| \), \(D_s \) and \(D_t \) are the sets of instances from the source and target domain respectively.
The Feature Augmentation Technique

WSD Accuracy (%) vs. Section Numbers

ON | SC+ON | SC+ON Augment

National University of Singapore

76.2% train on SEMCOR
Active Learning with the Feature Augmentation Technique

• Annotating a small number of target domain instances is worth the effort.
• Combining source-domain and target-domain training data via the feature augmentation technique is a good strategy.
• Use active learning to minimize the human effort in annotating target-domain instances. (Chan and Ng, 2007)
Active Learning with the Feature Augmentation Technique

- **Initial:** \(D_S \leftarrow \text{SEMCOR}, D_A \leftarrow \text{WSJ sections 02-21}, D_T \leftarrow \text{empty} \)
- **Loop:**
 - Until \(D_A \) is empty

 ![Diagram](image)
Active Learning with the Feature Augmentation Technique

![Graph showing WSD Accuracy (%) vs Iteration Number for different SemCor and iteration numbers: 50, 100, 150, 200, 300, 400, 500, and all. Each line represents a different dataset size, with iteration numbers ranging from 2 to 34.]
Active Learning with the Feature Augmentation Technique

- **SEMCOR Only**
- **Active Learning with 1,500 OntoNotes Instances**
- **Best Result with 31,114 OntoNotes Instances**

The graph shows the WSD accuracy (%) for different datasets and learning scenarios:

- **SEMCOR Only**
- **Active Learning with 1,500 OntoNotes Instances**
- **Best Result with 31,114 OntoNotes Instances**

Accuracy values:
- 76.2 for SEMCOR Only
- 82.6 for Active Learning with 1,500 OntoNotes Instances
- 89.1 for the Best Result with 31,114 OntoNotes Instances

- 10 active learning iterations on 150 most frequency word-types
- All target domain training instances

National University of Singapore
Outline

• Introduction
• An open source word sense disambiguation system
• Domain adaptation for word sense disambiguation
• Automatic extraction of training data from parallel corpora
• Word sense disambiguation for information retrieval
• Conclusion
Previous Work

Chan and Ng (2005) proposed a method to extract training instances from parallel texts by identifying the sense of the English words with their Chinese translations:

<table>
<thead>
<tr>
<th>#</th>
<th>article.n</th>
<th>Sense descriptions in WordNet</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>文章</td>
<td>Nonfictional prose forming an independent part of a publication</td>
</tr>
<tr>
<td>2</td>
<td>物品 物件 货品</td>
<td>One of a class of artifacts</td>
</tr>
<tr>
<td>3</td>
<td>条文 条款 条</td>
<td>A separate section of a legal document</td>
</tr>
<tr>
<td>4</td>
<td>冠词</td>
<td>A determiner that may indicate the specificity of reference of a noun phrase</td>
</tr>
</tbody>
</table>

- The reporter wrote an article about environment protection.
- 记者写了关于环境保护的文章。
- No hawker shall deposit in a private market any goods or other articles whatsoever.
- 任何小贩不得在私营街市内存放任何种类的货品或物品。
Previous Work

• Limitations:
 – Need manual selection of appropriate translations in a second language for every word sense.
 – A huge number of words in a language like English.

• Motivations and Aims:
 – Automatically select Chinese translations for English word senses.
 – The whole process of extracting training instances from parallel texts will be unsupervised.
Our Methods

• WordNet is an English sense inventory.
 – Basic element -- Synset: a set of synonyms
 • *e.g.* SynA -> cognition, knowledge
 – Each word sense has a corresponding synset
 • *e.g.* cognition%1:03:00 \[\rightarrow\] SynA
 knowledge%1:03:00

• **Four** methods to select Chinese translations for WordNet senses by making use of bilingual dictionaries and bilingual corpora.
1. Sinica Bilingual Ontological WordNet

Sinica Bilingual Ontological WordNet (BOW)

• Map WordNet to English-Chinese Translation Equivalents Database (ECTED)
• Functions as an English-Chinese bilingual WordNet
• Each WordNet synset has a set of Chinese translations
• 94,874 Chinese translations for 66,025 WordNet noun synsets. Each synset has 1.4 Chinese translations on average.
2. Common Bilingual Dictionaries

• Common English-Chinese bilingual dictionaries contain Chinese translations, and English/Chinese glosses for each English word sense.
• Sense definitions of these dictionaries are quite different from WordNet.
 – e.g. “interest”:
 3 senses in PowerWord vs. 7 senses in WordNet
2. Common Bilingual Dictionaries

Heuristic I:

If a Chinese translation c shared by two or more synonyms in a WordNet synset, assign c as a Chinese translation for this synset.

e.g. SynB -> pause, intermission, break, interruption and suspension

- **pause:** 中止 暫停 休止符...
- **break:** 休息 暫停 破裂 突変...
- **suspension:** 悬浮 暫停 中止 延迟...

Chinese translations from PowerWord
2. Common Bilingual Dictionaries

Heuristic I:

If a Chinese translation c shared by two or more synonyms in a WordNet synset, assign c as a Chinese translation for this synset.

e.g. SynB -> pause, intermission, break, interruption and suspension

- **pause:** 中止 暂停 休止符...
- **break:** 休息 暂停 破裂 突变...
- **suspension:** 悬浮 暂停 中止 延迟...

Chinese translations from PowerWord
Heuristic II:

For a monosemous word \(e \) in WordNet, assign its Chinese translations from common bilingual dictionaries to the WordNet synset corresponding to \(e \)'s only sense.

\[e.g. \text{SynC} \rightarrow \text{blessing, boon (monosemous)} \]

- blessing: 祝福
- boon: 恩惠 实惠 福利

Chinese translations from PowerWord
3. Shorten Chinese Translations

The Chinese translation c, which is selected as sense s of e but has no occurrence in parallel texts aligned to e -- *Wasted.*

- Shorten the Chinese translation c:
 - The longest prefix or suffix that has occurrences aligned to e in parallel texts.
 - Not a substring of any Chinese translations from dictionaries for a different sense s' of e.
3. Shorten Chinese Translations

e.g.

revenue sense 2: 尤指国家的税收
\[(especially \, referring \, to \, federal \, tax)\]

value sense 6: 价值观念
\[(value \, concept)\]
3. Shorten Chinese Translations

e.g.

revenue sense 2: 尤指国家的税收
(especially referring to federal tax)

value sense 6: 价值观念
(value concept)
4. Word Similarity Measure

The Chinese words aligned to \(e \) in parallel texts, but not selected -- \textit{Wasted}.

- Calculate their similarities to the Chinese translations those are already selected for some senses of \(e \).
 - Distribution similarity measure based on syntactic relations. \textit{(Lin, 1998)}

- Assign them to the senses corresponding to their most similar Chinese translations.
4. Word Similarity Measure

<table>
<thead>
<tr>
<th>#</th>
<th>Selected Chinese translations for revenue</th>
<th>Sense description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>收益 收入 总收入</td>
<td>the entire amount of income before any deductions are made</td>
</tr>
<tr>
<td>2</td>
<td>尤指国家之税收 税收</td>
<td>government income due to taxation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Candidate for revenue</th>
<th>Most similar</th>
<th>Score</th>
<th>Sense</th>
</tr>
</thead>
<tbody>
<tr>
<td>税款 (taxation)</td>
<td>税收</td>
<td>0.1995</td>
<td></td>
</tr>
<tr>
<td>征税 (levy)</td>
<td>税收</td>
<td>0.1254</td>
<td></td>
</tr>
<tr>
<td>收支 (income and expense)</td>
<td>收益</td>
<td>0.1006</td>
<td></td>
</tr>
</tbody>
</table>
4. Word Similarity Measure

<table>
<thead>
<tr>
<th>#</th>
<th>Selected Chinese translations for revenue</th>
<th>Sense description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>收益 收入 总收入</td>
<td>the entire amount of income before any deductions are made</td>
</tr>
<tr>
<td>2</td>
<td>尤指国家之税收 税收</td>
<td>government income due to taxation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Candidate for revenue</th>
<th>Most similar</th>
<th>Score</th>
<th>Sense</th>
</tr>
</thead>
<tbody>
<tr>
<td>税款 (taxation)</td>
<td>税收</td>
<td>0.1995</td>
<td>2</td>
</tr>
<tr>
<td>征税 (levy)</td>
<td>税收</td>
<td>0.1254</td>
<td>2</td>
</tr>
<tr>
<td>收支 (income and expense)</td>
<td>收益</td>
<td>0.1006</td>
<td>1</td>
</tr>
</tbody>
</table>
Experiments

• Training Data Set:
 – All the examples from SEMCOR and up to 1000 examples extracted from parallel texts according to SEMCOR distribution.

• Test Set: Nouns in OntoNotes 2.0
 – 605 noun types with 29,510 examples.
 – 257 nouns among the top 60% words in Brown Corpus, which have manually selected Chinese translations from (Chan and Ng, 2005a)

<table>
<thead>
<tr>
<th></th>
<th>T60Set</th>
<th>All nouns</th>
</tr>
</thead>
<tbody>
<tr>
<td># of word type</td>
<td>257</td>
<td>605</td>
</tr>
<tr>
<td># of examples</td>
<td>22,353</td>
<td>29,510</td>
</tr>
<tr>
<td>Avg. # of senses per word</td>
<td>4.3</td>
<td>3.5</td>
</tr>
</tbody>
</table>
Experiments

WordNet Sense 1 Baseline: a strong baseline in WSD by always picking the first sense in WordNet

SemCor + Manu 80.3%

SemCor + Manu 77.0%

SemCor + Similarity + Shorten + PowerWord + BOW
Outline

• Introduction
• An open source word sense disambiguation system
• Domain adaptation for word sense disambiguation
• Automatic extraction of training data from parallel corpora
• Word sense disambiguation for information retrieval
• Conclusion
Information Retrieval

• Information Retrieval (IR): rank documents based on relevance to keyword queries

• WSD for IR:
 – Identify the meanings of ambiguous query words
 – Make use of semantic relations between senses
The Language Modeling Approach to IR

Language models are constructed for each query and each document in a text collection C

- **Query** q: θ_q

 $$p(t \mid \theta_q) = \frac{tf(t,q)}{\sum_{t' \in q} tf(t',q)}$$

 Maximum Likelihood Estimation

- **Document** d: θ_d

 $$p(t \mid \theta_d) = \frac{tf(t,d) + \mu \cdot p(t \mid \theta_C)}{\sum_{t' \in d} tf(t',d) + \mu}$$

 Dirichlet-prior smoothing

Documents are ranked by their distances to q according to their language models

- Negative Kullback-Leibler (KL) divergence
Pseudo Relevance Feedback

• Pseudo Relevance Feedback (PRF)
 – Retrieve documents from a text collection C with the original query q
 – Assume that the top k retrieved documents D_q are relevant
 – Interpolate the original query model with m expansion query terms selected from D_q
 – Retrieve documents with the expanded query

• Collection Enrichment (CE)
 – Improve the quality of the feedback documents by using an additional external document collection X in the first retrieval step in PRF
Word Sense Disambiguation System

- Word Sense Disambiguation System Induced from Parallel Corpora
 - Use translations as senses
 - Extract training data from parallel corpora
- Word Sense Disambiguation for Short Queries
 - Propose a method to disambiguate terms in short queries
Word Sense Disambiguation System

• The meaning of a word can be disambiguated by its translation in a second language
• Induce a supervised WSD system from parallel corpora, with translations as senses (*no* manual labeling of senses):
 – Align parallel corpora with GIZA++
 – For an English morphological root e, extract its occurrences and corresponding translations from parallel corpora
 – Training data: English part
 – Sense: English morphological root e + Chinese translation
 • To differentiate English words sharing the same Chinese translations
 • E.g., Sense of *girls*: girl_女子, sense of *women*: woman_女子
 – Employ IMS to train the WSD models
Word Sense Disambiguation System

Both terms in query and documents can be ambiguous

• Documents are full articles with sufficient context
 – Apply WSD system on documents directly
 – $p(w, s, d)$: probability of assigning sense s to word occurrence w in document d
 – Each word occurrence in a document is assigned its list of senses with probabilities

• Queries are usually short, often with only two or three terms in a query.
 – Challenge: Insufficient context for WSD systems
 – Solution: Find some relevant text fragments that contain the query terms
Word Sense Disambiguation for Short Queries

• Assumption of pseudo relevance feedback (PRF):
 – The top k retrieved documents D_q are relevant
• D_q can be considered as relevant text fragments of q
• For each query term t in q, utilize the sense distribution of the words with the same stem form as t in D_q as a proxy to estimate the senses for t
 – $S(t, q)$: the union of the senses assigned to word occurrences in D_q with the same stem form as t
 – $p(t, s, q)$: probability of tagging t as sense s is proportional to the sum of the probabilities of tagging the above word occurrences as sense s
Incorporating Senses into LM
Approach

With the above method, we have assigned senses to terms in both queries and documents

- \(p(w, s, d) \): probability of tagging word occurrence \(w \) in \(d \) as sense \(s \)
- \(p(t, s, q) \): probability of tagging query term \(t \) in \(q \) as sense \(s \)

Adjust term frequencies with sense information
Incorporating Senses into LM
Approach

Adjust the term frequency of \(t \) in \(d \) \(tf(t, d) \) with the sense information

\[
\begin{align*}
\text{tf}_{\text{sen}}(t, d) &= tf(t, d) + \text{sen}(t, q, d) \\
\text{sen}(t, q, d) &= \alpha^{\Delta \cos(t, q, d)} \text{stf}(S(t, q), d)
\end{align*}
\]

- Sense similarity weight
- \(\alpha \geq 1 \)
- More similar, larger weight
- Sum of frequencies of \(t \)'s senses in \(d \)
- Documents with more senses of \(t \) will have higher term frequency

Update the probability of \(t \) in \(d \) accordingly

\[
p(t \mid \theta_{d}^{\text{sen}}) = \frac{\text{tf}_{\text{sen}}(t, d) + \mu \cdot p(t \mid \theta_{C}^{\text{sen}})}{\sum_{t' \in d} \text{tf}_{\text{sen}}(t', d) + \mu}
\]
Expanding with Sense Synonym Relations

Senses in our WSD system consist of two parts: English morphological root and Chinese translation, e.g., lady_女子

• Senses with the same Chinese translation are assumed to be synonyms

• $R(s)$: senses with the same Chinese translation as s

• For example:

 girl_女子 female_女子 woman_女子

 $R(girl_女子) = \{ \text{female}_女子, \text{woman}_女子 \}$
Expanding with Sense Synonym Relations

Synonym relation is commonly used to improve IR performance

- $R(s)$: senses that are synonymous with sense s
- $S(q)$: union of senses assigned to terms in q

$$\begin{align*}
tf_{syn}(t,d) &= tf_{sen}(t,d) + \text{syn}(t,q,d) \\
\text{syn}(t,q,d) &= \sum_{s \in S(t,q)} \beta(s,q) \cdot p(t,s,q) \cdot stf(R(s) - S(q),d)
\end{align*}$$

- Scaling function
- Control the impact of synonyms
- Sum of frequencies of synonyms of s in d
- Senses already in q are excluded
- More synonyms, higher term frequency

Update the probability of t in d accordingly
Experimental Setting

Conduct experiments on the TREC collection:

• **Text collection C**
 – TREC disk 4 and 5, minus the CR corpus,
 – 528,155 documents

• **External collection X**
 – The other documents in TREC disk 1 to 5

• **Total:** about 1.6 million documents

• **Tuning data**
 – 50 queries from TREC6 Ad Hoc task

• **Test data**
 – 199 queries from TREC7 & 8 Ad Hoc tasks and Robust03 & 04 tasks
Experiments

Baseline IR approach: Stemprf (using Lemur toolkit)
• Stem-based unigram LM approach
• Dirichlet-prior smoothing for document model
• Negative KL-divergence
• Pseudo relevance feedback with collection enrichment

WSD methods:
• Supervised WSD system
 – About 700 hours to disambiguate 1.6 million documents in C and X
• Most frequent sense (MFS) baseline
• Even probability baseline
Experimental Results

- Retrieve the top-ranked 1,000 documents for each query
- Mean average precision (MAP) as evaluation metric

<table>
<thead>
<tr>
<th>Method</th>
<th>TREC7</th>
<th>TERC8</th>
<th>Robust03</th>
<th>Robust04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top 1</td>
<td>0.2530</td>
<td>0.3063</td>
<td>0.3704</td>
<td>0.4019</td>
</tr>
<tr>
<td>Top 2</td>
<td>0.2488</td>
<td>0.2876</td>
<td>0.3065</td>
<td>0.4008</td>
</tr>
<tr>
<td>Top 3</td>
<td>0.2427</td>
<td>0.2853</td>
<td>0.3037</td>
<td>0.3514</td>
</tr>
<tr>
<td>Stem_{prf} (BL)</td>
<td>0.2634</td>
<td>0.2944</td>
<td>0.3586</td>
<td>0.3781</td>
</tr>
<tr>
<td>BL+MFS</td>
<td>0.2655</td>
<td>0.2971</td>
<td>0.3626*</td>
<td>0.3802</td>
</tr>
<tr>
<td>BL+Even</td>
<td>0.2655</td>
<td>0.2972</td>
<td>0.3623*</td>
<td>0.3814</td>
</tr>
<tr>
<td>BL+WSD</td>
<td>0.2679*</td>
<td>0.2986*</td>
<td>0.3649*</td>
<td>0.3842</td>
</tr>
<tr>
<td>BL+MFS+Syn</td>
<td>0.2756*</td>
<td>0.3034*</td>
<td>0.3649*</td>
<td>0.3859</td>
</tr>
<tr>
<td>BL+Even+Syn</td>
<td>0.2713*</td>
<td>0.3061*</td>
<td>0.3657*</td>
<td>0.3859*</td>
</tr>
<tr>
<td>BL+WSD+Syn</td>
<td>0.2762*</td>
<td>0.3126*</td>
<td>0.3735*</td>
<td>0.3891*</td>
</tr>
</tbody>
</table>

*: two-tailed t-test with p < 0.05 over baseline
**:two-tailed t-test with p < 0.01 over baseline
Analysis

• BL+{MFS, Even, WSD} improve over baseline Stem_{prf}
 – The morphological roots of senses overcome variation due to inflection (better recall)
 ▸ For example, in topic 326 {ferry sinkings}
 Stem form of “sinkings” is sink
 Inflection forms of “sink”: “sunk”, “sank” and “sunken”
Analysis

• BL+{MFS, Even, WSD} improve over baseline Stem_{prf}
 – The morphological roots of senses overcome variation due to inflection (better recall)

• BL+WSD outperforms BL+{MFS, Even}
 – Pinpoint the sense of query terms (better precision)
 ‣ For example, in topic 357 {territorial \textit{waters} dispute}
 water_水域 0.795 (body of water)
 water_水 0.047 (H_{2}O)
 water_供水 0.025 (provide with water)
 ...
 ‣ BL+WSD is better than BL+{MFS, Even} on 121 queries and 119 queries, respectively
Analysis

• BL+{MFS, Even, WSD} improve over baseline Stem_{prf}
 – The morphological roots of senses overcome variation due to inflection (better recall)

• BL+WSD outperforms BL+{MFS, Even}
 – Pinpoint the sense of query terms (better precision)

• Expanding with synonym relations further improves the performance
 – WSD helps to choose the appropriate synonyms for expansion (better recall)

 For example, in topic 648 {family \textit{leave} law}

 \begin{itemize}
 \item leave_假期 0.371 (leave of absence)
 \item leave_离开 0.198 (go away)
 \end{itemize}

...
Outline

• Introduction
• An open source word sense disambiguation system
• Domain adaptation for word sense disambiguation
• Automatic extraction of training data from parallel corpora
 • Word sense disambiguation for information retrieval
• Conclusion
Conclusion

• Develop and release an open source supervised WSD system, IMS. (Chapter 3)
• Examine the domain adaptation problem in WSD by combining active learning and the feature augmentation technique. (Chapter 4)
• Propose a method to extract sense-annotated examples from parallel corpora without extra human effort. (Chapter 5)
• Improve the performance of IR by integrating senses. (Chapter 6)
Future Work

• Investigate the use of a semi-supervised extension of the feature augmentation technique (Daume III et al., 2010)
• Gather WSD training data from parallel corpora for other languages
• Apply WSD to question answering
Publications

Zhi Zhong, Hwee Tou Ng, and Yee Seng Chan (EMNLP 2008)
Word sense disambiguation using OntoNotes: An empirical study.

Zhi Zhong and Hwee Tou Ng (IJCAI 2009)
Word sense disambiguation for all words without hard labor.

Zhi Zhong and Hwee Tou Ng (ACL 2010)
It Makes Sense: A wide-coverage word sense disambiguation system for free text.

Zhi Zhong and Hwee Tou Ng (ACL 2012)
Word sense disambiguation improves information retrieval.