Time Expression Analysis and Recognition Using Syntactic Token Types and General Heuristic Rules

Xiaoshi Zhong, Aixin Sun, and Erik Cambria
Computer Science and Engineering
Nanyang Technological University
{xszhong, axsun, cambria}@ntu.edu.sg
Outline

• **Time expression analysis**
 • Datasets: TimeBank, Gigaword, WikiWars, Tweets
 • Findings: short expressions, occurrence, small vocabulary, similar syntactic behavior

• **Time expression recognition**
 • SynTime: syntactic token types and general heuristic rules
 • Baselines: HeidelTime, SUTime, UWTIime
Time Expression Analysis

• Datasets
 • TimeBank
 • Gigaword
 • WikiWars
 • Tweets

• Findings
 • Short time expressions
 • Occurrence
 • Small vocabulary
 • Similar syntactic behaviour

Example time expressions:
 now
 today
 Friday
 February
 the last week
 13 January 1951
 June 30, 1990
 8 to 20 days
 the third quarter of 1984
 …
Time Expression Analysis - Datasets

- **Datasets**
 - TimeBank: a benchmark dataset used in TempEval series
 - Gigaword: a large dataset with generated labels and used in TempEval-3
 - WikiWars: a specific domain dataset collected from Wikipedia about war
 - Tweets: a manually labeled dataset with informal text collected from Twitter

- **Statistics of the datasets**

<table>
<thead>
<tr>
<th>Dataset</th>
<th>#Docs</th>
<th>#Words</th>
<th>#TIMEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>TimeBank</td>
<td>183</td>
<td>61,418</td>
<td>1,243</td>
</tr>
<tr>
<td>Gigaword</td>
<td>2,452</td>
<td>666,309</td>
<td>12,739</td>
</tr>
<tr>
<td>WikiWars</td>
<td>22</td>
<td>119,468</td>
<td>2,671</td>
</tr>
<tr>
<td>Tweets</td>
<td>942</td>
<td>18,199</td>
<td>1,127</td>
</tr>
</tbody>
</table>

The four datasets vary in source, size, domain, and text type, but we will see that their time expressions demonstrate similar characteristics.
Time Expression Analysis – Finding 1

• **Short time expressions**: time expressions are very short.

80% of time expressions contain ≤ 3 words
90% of time expressions contain ≤ 4 words

Average length of time expressions

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Average length</th>
</tr>
</thead>
<tbody>
<tr>
<td>TimeBank</td>
<td>2.00</td>
</tr>
<tr>
<td>Gigaword</td>
<td>1.70</td>
</tr>
<tr>
<td>WikiWars</td>
<td>2.38</td>
</tr>
<tr>
<td>Tweets</td>
<td>1.51</td>
</tr>
</tbody>
</table>

Average length: about 2 words
Time Expression Analysis – Finding 2

• **Occurrence**: most of time expressions contain time token(s).

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>TimeBank</td>
<td>94.61</td>
</tr>
<tr>
<td>Gigaword</td>
<td>96.44</td>
</tr>
<tr>
<td>WikiWars</td>
<td>91.81</td>
</tr>
<tr>
<td>Tweets</td>
<td>96.01</td>
</tr>
</tbody>
</table>

Example time tokens (red):
- now
- today
- Friday
- February
- the last week
- 13 January 1951
- June 30, 1990
- 8 to 20 days
- the third quarter of 1984
- …
Time Expression Analysis – Finding 3

• **Small vocabulary**: only a small group of time words are used to express time information.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>#Words</th>
<th>#Time tokens</th>
</tr>
</thead>
<tbody>
<tr>
<td>TimeBank</td>
<td>130</td>
<td>64</td>
</tr>
<tr>
<td>Gigaword</td>
<td>214</td>
<td>80</td>
</tr>
<tr>
<td>WikiWars</td>
<td>224</td>
<td>74</td>
</tr>
<tr>
<td>Tweets</td>
<td>107</td>
<td>64</td>
</tr>
</tbody>
</table>

45 distinct time tokens appear in all the four datasets.

That means, time expressions highly overlap at their time tokens.
Time Expression Analysis – Finding 4

• **Similar syntactic behaviour**: (1) POS information cannot distinguish time expressions from common text, but (2) within time expressions, POS tags can help distinguish their constituents.
 • (1) For the top 40 POS tags (10 × 4 datasets), 37 have percentage lower than 20%, other 3 are CD.
 • (2) Time tokens mainly have NN* and RB, modifiers have JJ and RB, and numerals have CD.
Time Expression Analysis – Eureka!

• **Similar syntactic behaviour**: (1) POS information cannot distinguish time expressions from common text, but (2) within time expressions, POS tags can help distinguish their constituents.
 * (1) For the top 40 POS tags (10 × 4 datasets), 37 have percentage lower than 20%, other 3 are CD.
 * (2) Time tokens mainly have NN* and RB, modifiers have JJ and RB, and numerals have CD.

When seeing (2), we realize that this is exactly how linguists define part-of-speech for language; similar words have similar syntactic behaviour. The definition of part-of-speech for language inspires us to define a type system for the time expression, part of language.

Our Eureka! moment
Time Expression Analysis - Summary

• Summary
 • On average, a time expression contains two tokens; one is time token and the other is modifier/numeral. And the time tokens are in small size.

• Idea for recognition
 • To recognize a time expression, we first recognize the time token, then recognize the modifier/numeral.
Time Expression Analysis - Idea

• Summary
 • On average, a time expression contains two tokens; one is time token and the other is modifier/numeral. And the time tokens are in small size.

• Idea for recognition
 • To recognize a time expression, we first recognize the time token, then recognize the modifier/numeral.

20 days; this week; next year; July 29; …
Time Expression Analysis - Idea

• Summary
 • On average, a time expression contains two tokens; one is time token and the other is modifier/numeral. And the time tokens are in small size.

• Idea for recognition
 • To recognize a time expression, we first recognize the time token, then recognize the modifier/numeral.

Time token

20 days; this week; next year; July 29; …
Time Expression Analysis - Idea

• Summary
 • On average, a time expression contains two tokens; one is time token and the other is modifier/numeral. And the time tokens are in small size.

• Idea for recognition
 • To recognize a time expression, we first recognize the time token, then recognize the modifier/numeral.

Time token Modifier/Numeral
20 days; this week; next year; July 29; …
Time Expression Recognition

• SynTime
 • Syntactic token types
 • General heuristic rules

• Baseline methods
 • HeidelTime
 • SUTime
 • UWTime

• Experiment datasets
 • TimeBank
 • WikiWars
 • Tweets
Time Expression Recognition - SynTime

• Syntactic token types
• General heuristic rules
Time Expression Recognition - SynTime

• Syntactic token types – A type system
 • Time token: explicitly express time information, e.g., “year”
 • 15 token types: DECADE, YEAR, SEASON, MONTH, WEEK, DATE, TIME, DAY_TIME, TIMELINE, HOLIDAY, PERIOD, DURATION, TIME_UNIT, TIME_ZONE, ERA
 • Modifier: modify time tokens, e.g., “next” modifies “year” in “next year”
 • 5 token types: PREFIX, SUFFIX, LINKAGE, COMMA, IN_ARTICLE
 • Numeral: ordinals and numbers, e.g., “10” in “next 10 years”
 • 1 token type: NUMERAL
 • Token types to tokens is like POS tags to words
 • POS tags: next/JJ 10/CD years/NNS
 • Token types: next/PREFIX 10/NUMERAL years/TIME_UNIT
Time Expression Recognition - SynTime

• General heuristic rules
 • Only relevant to token types
 • Independent of specific tokens
SynTime – Layout

<table>
<thead>
<tr>
<th>Rule level</th>
<th>General Heuristic Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type level</td>
<td>Time Token, Modifier, Numeral</td>
</tr>
<tr>
<td>Token level</td>
<td>1989, February, 12:55, this year, 3 months ago, ...</td>
</tr>
</tbody>
</table>

Token level: time-related tokens and token regular expressions

Type level: token types group the tokens and token regular expressions

Rule level: heuristic rules work on token types and are independent of specific tokens
SynTime – Overview in practice

Add keywords under defined token types and do not change any rules

Import token regex to time token, modifier, numeral

Identify time tokens

Identify modifiers and numerals by expanding the time tokens’ boundaries

Extract time expressions
An example: the third quarter of 1984
An example: the third quarter of 1984

Assign tokens with token types

A sequence of tokens:

<table>
<thead>
<tr>
<th>PREFIX</th>
<th>NUMERAL</th>
<th>TIME_UNIT</th>
<th>PREFIX</th>
<th>YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>the</td>
<td>third</td>
<td>quarter</td>
<td>of</td>
<td>1984</td>
</tr>
</tbody>
</table>
An example: the third quarter of 1984

Identify time tokens

Assign tokens with token types

A sequence of tokens:

Heuristic Rules

PREFIX NUMERAL TIME_UNIT PREFIX YEAR

the third quarter of 1984
An example: the third quarter of 1984

Identify modifiers and numerals by searching time tokens’ surroundings

Identify time tokens

Assign tokens with token types

A sequence of tokens:

Heuristic Rules

The sequence of tokens:

```
PREFIX NUMERAL TIME_UNIT PREFIX YEAR
```

```
the third quarter of 1984
```
An example: the third quarter of 1984

Identify modifiers and numerals by searching time tokens’ surroundings

Identify time tokens

Assign tokens with token types

A sequence of tokens:

Heuristic Rules

The tree structure shows:

- **PREFIX**: the
- **NUMERAL**: third
- **TIME_UNIT**: quarter
- **PREFIX**: of
- **YEAR**: 1984
An example: the third quarter of 1984

Identify modifiers and numerals by searching time tokens’ surroundings

Identify time tokens

Assign tokens with token types

A sequence of tokens:

the third quarter of 1984
An example: the third quarter of 1984

Identify modifiers and numerals by searching time tokens’ surroundings

Identify time tokens

Assign tokens with token types

A sequence of tokens:
An example: the third quarter of 1984

Identify modifiers and numerals by searching time tokens’ surroundings

Identify time tokens

Assign tokens with token types

A sequence of tokens:

Heuristic Rules
An example: the third quarter of 1984

A sequence of token types

PREFIX NUMERAL TIME_UNIT PREFIX YEAR
An example: the third quarter of 1984

A sequence of token types

Export a sequence of tokens as time expression
An example: the third quarter of 1984
Time Expression Recognition - Experiments

• SynTime
 • SynTime-I: Initial version
 • SynTime-E: Expanded version, adding keywords to SynTime-I
 (Add keywords under the defined token types and do not change any rules.)

• Baseline methods
 • HeidelTime: rule-based method
 • SUTime: rule-based method
 • UWTime: learning-based method

• Experiment datasets
 • TimeBank: comprehensive data in formal text
 • WikiWars: specific domain data in formal text
 • Tweets: comprehensive data in informal text
<table>
<thead>
<tr>
<th>Dataset</th>
<th>Methods</th>
<th>Strict Match</th>
<th></th>
<th></th>
<th></th>
<th>Relexed Match</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pr.</td>
<td>Re.</td>
<td>F1</td>
<td>Pr.</td>
<td>Re.</td>
<td>F1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TimeBank</td>
<td>HeidelTime (Strotgen et al., 2013)</td>
<td>83.85</td>
<td>78.99</td>
<td>81.34</td>
<td>93.08</td>
<td>87.68</td>
<td>90.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SUTime (Chang and Manning, 2013)</td>
<td>78.72</td>
<td>80.43</td>
<td>79.57</td>
<td>89.36</td>
<td>91.30</td>
<td>90.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UWTime (Lee et al., 2014)</td>
<td>86.10</td>
<td>80.40</td>
<td>83.10</td>
<td>94.60</td>
<td>88.40</td>
<td>91.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SynTime-I</td>
<td>91.43</td>
<td>92.75</td>
<td>92.09</td>
<td>94.29</td>
<td>95.65</td>
<td>94.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SynTime-E</td>
<td>91.49</td>
<td>93.48</td>
<td>92.47</td>
<td>93.62</td>
<td>95.65</td>
<td>94.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WikiWars</td>
<td>HeidelTime (Lee et al., 2014)</td>
<td>85.20</td>
<td>79.30</td>
<td>82.10</td>
<td>92.60</td>
<td>86.20</td>
<td>89.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SUTime</td>
<td>78.61</td>
<td>76.69</td>
<td>76.64</td>
<td>95.74</td>
<td>89.57</td>
<td>92.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UWTime (Lee et al., 2014)</td>
<td>87.70</td>
<td>80.80</td>
<td>83.00</td>
<td>97.60</td>
<td>87.60</td>
<td>92.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SynTime-I</td>
<td>80.00</td>
<td>80.22</td>
<td>80.11</td>
<td>92.16</td>
<td>92.41</td>
<td>92.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SynTime-E</td>
<td>79.18</td>
<td>83.47</td>
<td>81.27</td>
<td>90.49</td>
<td>95.39</td>
<td>92.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tweets</td>
<td>HeidelTime</td>
<td>89.58</td>
<td>72.88</td>
<td>80.37</td>
<td>95.83</td>
<td>77.97</td>
<td>85.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SUTime</td>
<td>76.03</td>
<td>77.97</td>
<td>76.99</td>
<td>88.43</td>
<td>90.68</td>
<td>89.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UWTime</td>
<td>88.54</td>
<td>72.03</td>
<td>79.44</td>
<td>96.88</td>
<td>78.81</td>
<td>86.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SynTime-I</td>
<td>89.52</td>
<td>94.07</td>
<td>91.74</td>
<td>93.55</td>
<td>98.31</td>
<td>95.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SynTime-E</td>
<td>89.20</td>
<td>94.49</td>
<td>91.77</td>
<td>93.20</td>
<td>98.78</td>
<td>95.88</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Difference from other Rule-based Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>SynTime</th>
<th>Other rule-based methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layout</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rule level</td>
<td>General Heuristic Rules</td>
<td>Deterministic Rules</td>
</tr>
<tr>
<td>Type level</td>
<td>Time Token, Modifier, Numeral</td>
<td>Token level</td>
</tr>
<tr>
<td>Token level</td>
<td>1989, February, 12:55, this year, 3 months ago, ...</td>
<td>1989, February, 12:55, this year, 3 months ago, ...</td>
</tr>
<tr>
<td>Property</td>
<td>Heuristic rules work on token types and are independent of specific tokens, thus they are independent of specific domains and specific text types and specific languages.</td>
<td>Deterministic rules directly work on tokens and phrases in a fixed manner, thus the taggers lack flexibility</td>
</tr>
<tr>
<td>Example</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heuristic Rules</td>
<td>/the/? [{tag:JJ}]? ($NUM_ORD) /-/? [{tag:JJ}]? /quarter/</td>
<td></td>
</tr>
</tbody>
</table>

Diagrams

- **Heuristic Rules Diagram**
 - PREFIX
 - NUMERAL
 - TIME_UNIT
 - PREFIX
 - YEAR
 - the
 - third
 - quarter
 - of
 - 1984

- **Deterministic Rules Diagram**
 - PREFIX
 - NUMERAL
 - TIME_UNIT
 - PREFIX
 - YEAR
 - /the/? [{tag:JJ}]? ($NUM_ORD) /-/? [{tag:JJ}]? /quarter/
A simple idea

Rules can be designed with generality and heuristics