Towards String-to-Tree Neural Machine Translation

Roee Aharoni & Yoav Goldberg
NLP Lab, Bar Ilan University
ACL 2017
NMT is all the rage!
NMT is all the rage!
NMT is all the rage!

• Driving the current state-of-the-art (Sennrich et al., 2016)
NMT is all the rage!

- Driving the current state-of-the-art (Sennrich et al., 2016)
- Widely adopted by the industry
Seq2Seq with Attention

Bahdanau et al. (2015)
Seq2Seq with Attention

Bahdanau et al. (2015)

\[f = \arg\max_{f'} p(f' | e) \]
Syntax was all the rage!
Syntax was all the rage!

- The “previous” state-of-the-art was syntax-based SMT

Syntax was all the rage!

• The “previous” state-of-the-art was syntax-based SMT

• i.e. systems that used linguistic information (usually represented as parse trees)

Syntax was all the rage!

- The “previous” state-of-the-art was syntax-based SMT
- i.e. systems that used linguistic information (usually represented as **parse trees**)
- “Beaten” by NMT in 2016

Syntax was all the rage!

- The “previous” state-of-the-art was syntax-based SMT
- i.e. systems that used linguistic information (usually represented as parse trees)
- “Beaten” by NMT in 2016
- Can we bring the benefits of syntax into the recent neural systems?

Syntax: Constituency Structure
Syntax: Constituency Structure

- A Constituency (a.k.a Phrase-Structure) grammar defines a set of rewrite rules which describe the **structure** of the language.
Syntax: Constituency Structure

• A Constituency (a.k.a Phrase-Structure) grammar defines a set of rewrite rules which describe the **structure** of the language.

• **Groups** words into larger units (constituents)
Syntax: Constituency Structure

- A Constituency (a.k.a Phrase-Structure) grammar defines a set of rewrite rules which describe the **structure** of the language.
 - **Groups** words into larger units (constituents)
 - Defines a **hierarchy** between constituents
Syntax: Constituency Structure

- A Constituency (a.k.a Phrase-Structure) grammar defines a set of rewrite rules which describe the **structure** of the language.
 - **Groups** words into larger units (constituents)
 - Defines a **hierarchy** between constituents
 - Draws **relations** between different constituents (words, phrases, clauses…)

```
the Prime Ministers of India and Japan met in Tokyo.
```
Why Syntax Can Help MT?
Why Syntax Can Help MT?

- **Hints** as to which word sequences belong together
Why Syntax Can Help MT?

- **Hints** as to which word sequences belong together
- Helps in producing **well structured** sentences
Why Syntax Can Help MT?

- **Hints** as to which word sequences belong together
- Helps in producing **well structured** sentences
- Allows **informed reordering** decisions according to the syntactic structure
Why Syntax Can Help MT?

- **Hints** as to which word sequences belong together
- Helps in producing **well structured** sentences
- Allows **informed reordering** decisions according to the syntactic structure
- Encourages **long-distance dependencies** when selecting translations
String-to-Tree Translation

die Premierminister Indiens und Japans trafen sich in Tokio.

source

S
 /
 NP VP
 /
 NP PP
 /
 NP NP
 /
 the of

PP

s

target

the Prime Ministers of India and Japan met in Tokyo.
Our Approach: String-to-Tree NMT
Our Approach: String-to-Tree NMT

Jane hatte eine Katze.

source
Our Approach: String-to-Tree NMT

Jane hatte eine Katze . → Jane had a cat .

source target
Our Approach: String-to-Tree NMT

Jane hatte eine Katze. \rightarrow (ROOT (S (NP Jane) NP (VP had (NP a cat) NP)VP).

- Main idea: translate a source sentence into a linearized tree of the target sentence
Our Approach: String-to-Tree NMT

\[\text{Jane hatte eine Katze} \rightarrow \text{(ROOT (S (NP Jane))_{NP} (VP had (NP a cat))_{NP})_{VP}.} \]

- Main idea: translate a source sentence into a **linearized tree** of the target sentence
- Inspired by works on RNN-based syntactic parsing (Vinyals et. al, 2015, Choe & Charniak, 2016)
Our Approach: String-to-Tree NMT

Jane hatte eine Katze \(\rightarrow (_{\text{ROOT}} (_{\text{s}} (_{\text{NP}} Jane)_{\text{NP}} (_{\text{VP}} \text{had} (_{\text{NP}} \text{a cat})_{\text{NP}})_{\text{VP}}) \).
Experimental Details

- We used the Nematus toolkit (Sennrich et al. 2017)
- Joint BPE segmentation (Sennrich et al. 2016)
- For training, we parse the target side using the BLLIP parser (McClosky, Charniak and Johnson, 2006)
- Requires some care about making BPE, Tokenization and Parser work together
Experiments - Large Scale
Experiments - Large Scale

- German to English, **4.5 million** parallel training sentences from WMT16
Experiments - Large Scale

• German to English, **4.5 million** parallel training sentences from WMT16

• Train two NMT models using the same setup (same settings as the SOTA neural system in WMT16)
Experiments - Large Scale

- German to English, **4.5 million** parallel training sentences from WMT16

- Train two NMT models using the same setup (same settings as the SOTA neural system in WMT16)
 - syntax-aware *(bpe2tree)*
Experiments - Large Scale

- German to English, **4.5 million** parallel training sentences from WMT16
- Train two NMT models using the same setup (same settings as the SOTA neural system in WMT16)
 - syntax-aware *(bpe2tree)*
 - syntax-agnostic baseline *(bpe2bpe)*
Experiments - Large Scale

• German to English, **4.5 million** parallel training sentences from WMT16

• Train two NMT models using the same setup (same settings as the SOTA neural system in WMT16)

 • syntax-aware (**bpe2tree**)

 • syntax-agnostic baseline (**bpe2bpe**)

• The syntax-aware model performs better in terms of BLEU

<table>
<thead>
<tr>
<th>system</th>
<th>newestest2015</th>
<th>newestest2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>bpe2bpe</td>
<td>27.33</td>
<td>31.19</td>
</tr>
<tr>
<td>bpe2tree</td>
<td>27.36</td>
<td>32.13</td>
</tr>
<tr>
<td>bpe2bpe ens.</td>
<td>28.62</td>
<td>32.38</td>
</tr>
<tr>
<td>bpe2tree ens.</td>
<td>28.7</td>
<td>33.24</td>
</tr>
</tbody>
</table>
Experiments - Low Resource

- German/Russian/Czech to English - **180k-140k** parallel training sentences (News Commentary v8)

- The syntax-aware model performs better in terms of BLEU in **all** cases (12 comparisons)

- Up to 2+ BLEU improvement

<table>
<thead>
<tr>
<th>system</th>
<th>newestest2015</th>
<th>newestest2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>bpe2bpe</td>
<td>13.81</td>
<td>14.16</td>
</tr>
<tr>
<td>bpe2tree</td>
<td>14.55</td>
<td>16.13</td>
</tr>
<tr>
<td>bpe2bpe ens.</td>
<td>14.42</td>
<td>15.07</td>
</tr>
<tr>
<td>bpe2tree ens.</td>
<td>15.69</td>
<td>17.21</td>
</tr>
<tr>
<td>bpe2bpe</td>
<td>12.58</td>
<td>11.37</td>
</tr>
<tr>
<td>bpe2tree</td>
<td>12.92</td>
<td>11.94</td>
</tr>
<tr>
<td>bpe2bpe ens.</td>
<td>13.36</td>
<td>11.91</td>
</tr>
<tr>
<td>bpe2tree ens.</td>
<td>13.66</td>
<td>12.89</td>
</tr>
<tr>
<td>bpe2bpe</td>
<td>10.85</td>
<td>11.23</td>
</tr>
<tr>
<td>bpe2tree</td>
<td>11.54</td>
<td>11.65</td>
</tr>
<tr>
<td>bpe2bpe ens.</td>
<td>11.46</td>
<td>11.77</td>
</tr>
<tr>
<td>bpe2tree ens.</td>
<td>12.43</td>
<td>12.68</td>
</tr>
</tbody>
</table>
Looking Beyond BLEU
Accurate Trees

- 99% of the predicted trees in the development set had valid bracketing.
- Eye-balling the predicted trees found them well-formed and following the syntax of English.
Where Syntax Helps? Alignments
Where Syntax Helps? Alignments

- The attention based model induces soft **alignments** between the source and the target
Where Syntax Helps? Alignments

- The attention based model induces soft alignments between the source and the target.
- The syntax-aware model produced more sensible alignments.
Where Syntax Helps? Alignments

- The attention based model induces soft \textbf{alignments} between the source and the target.
- The syntax-aware model produced more sensible alignments.
Where Syntax Helps? Alignments

• The attention based model induces soft alignments between the source and the target.

• The syntax-aware model produced more sensible alignments.
Where Syntax Helps? Alignments

• The attention based model induces soft **alignments** between the source and the target

• The syntax-aware model produces more sensible alignments
Where Syntax Helps? Alignments

- The attention based model induces soft alignments between the source and the target.

- The syntax-aware model produces more sensible alignments.
Where Syntax Helps? Alignments

- The attention based model induces soft alignments between the source and the target.
- The syntax-aware model produces more sensible alignments.
Where Syntax Helps? Alignments

- The attention based model induces soft **alignments** between the source and the target.

- The syntax-aware model produces more sensible alignments.
Attending to Source Syntax
Attending to Source Syntax

- We inspected the attention weights during the production of the tree’s **opening brackets**
Attending to Source Syntax

• We inspected the attention weights during the production of the tree’s **opening brackets**

• The model consistently attends to the **main verb** (“hatte”) or to structural markers (question marks, hyphens…) in the source sentence
Attending to Source Syntax

- We inspected the attention weights during the production of the tree’s **opening brackets**

- The model consistently attends to the **main verb** ("hatte") or to structural markers (question marks, hyphens…) in the source sentence

- Indicates the system implicitly learns **source syntax** to some extent (Shi, Padhi and Knight, 2016) and possibly **plans** the decoding accordingly
Where Syntax Helps? Structure

über mehrere Jahre hatte niemand in dem Haus gelebt.
Where Syntax Helps? Structure

über mehrere Jahre hatte niemand in dem Haus gelebt.
for several years nobody had lived in the house.
Where Syntax Helps? Structure

no one had lived in the house for several years.

über mehrere Jahre hatte niemand in dem Haus gelebt.

for several years nobody had lived in the house.
Structure (I) - Reordering
• German to English translation requires a significant amount of **reordering** during translation
Structure (I) - Reordering

- German to English translation requires a significant amount of **reordering** during translation.

- Quantifying reordering shows that the syntax-aware system performs **more reordering** during the training process.
Structure (I) - Reordering
Structure (I) - Reordering

• We would like to interpret the increased reordering from a syntactic perspective
Structure (I) - Reordering

- We would like to interpret the increased reordering from a syntactic perspective
- We extract GHKM rules (Galley et al., 2004) from the dev set using the predicted trees and attention-induced alignments
Structure (I) - Reordering

• We would like to interpret the increased reordering from a syntactic perspective

• We extract GHKM rules (Galley et al., 2004) from the dev set using the predicted trees and attention-induced alignments

• The most common rules reveal linguistically sensible transformations, like moving the verb from the end of a German constituent to the beginning of the matching English one
Structure (I) - Reordering

- We would like to interpret the increased reordering from a syntactic perspective.
- We extract GHKM rules (Galley et al., 2004) from the dev set using the predicted trees and attention-induced alignments.
- The most common rules reveal linguistically sensible transformations, like moving the verb from the end of a German constituent to the beginning of the matching English one.
- More examples in the paper.
Structure (II) - Relative Constructions
A common linguistic structure is **relative constructions**, i.e. “The XXX *which* YYY”, “A XXX *whose* YYY”…
Structure (II) - Relative Constructions

• A common linguistic structure is **relative constructions**, i.e. “The XXX **which** YYY”, “A XXX **whose** YYY”…

• The words that connect the clauses in such constructions are called **relative pronouns**, i.e. “who”, “which”, “whom”…
Structure (II) - Relative Constructions

• A common linguistic structure is relative constructions, i.e. “The XXX which YYY”, “A XXX whose YYY”…

• The words that connect the clauses in such constructions are called relative pronouns, i.e. “who”, “which”, “whom”…

• The syntax-aware system produced more relative pronouns due to the syntactic context
Structure (II) - Relative Constructions
Structure (II) - Relative Constructions

Source:

“Guangzhou, das in Deutschland auch Kanton genannt wird…”
Structure (II) - Relative Constructions

Source:

“Guangzhou, das in Deutschland auch Kanton genannt wird…”

Reference:

“Guangzhou, which is also known as Canton in Germany…”
Structure (II) - Relative Constructions

Source:

“Guangzhou, das in Deutschland auch Kanton genannt wird…”

Reference:

“Guangzhou, which is also known as Canton in Germany…”

Syntax-Agnostic:

“Guangzhou, also known in Germany, is one of…”
Structure (II) - Relative Constructions

Source:

“Guangzhou, das in Deutschland auch Kanton genannt wird…”

Reference:

“Guangzhou, which is also known as Canton in Germany…”

Syntax-Agnostic:

“Guangzhou, also known in Germany, is one of…”

Syntax-Based:

“Guangzhou, which is also known as the canton in Germany,…”
Structure (II) - Relative Constructions

Source:

“Zugleich droht der stark von internationalen Firmen abhängigen Region ein Imageschaden…”
Structure (II) - Relative Constructions

Source:

“Zugleich droht der stark von internationalen Firmen abhängigen Region ein Imageschaden…”

Reference:

“At the same time, the image of the region, which is heavily reliant on international companies…”
Structure (II) - Relative Constructions

Source:

“At the same time, the image of the region, which is heavily reliant on international companies…”

Reference:

“At the same time, the image of the region, which is heavily reliant on international companies…”

Syntax-Agnostic:

“At the same time, the region's heavily dependent region…”
Structure (II) - Relative Constructions

Source:
“Zugleich droht der stark von internationalen Firmen abhängigen Region ein Imageschaden…”

Reference:
“At the same time, the image of the region, which is heavily reliant on international companies…”

Syntax-Agnostic:
“At the same time, the region's heavily dependent region…”

Syntax-Based:
“At the same time, the region, which is heavily dependent on international firms…”
Human Evaluation
Human Evaluation

• We performed a small-scale human-evaluation using mechanical turk on the first 500 sentences in newstest 2015
Human Evaluation

• We performed a small-scale human-evaluation using mechanical turk on the first 500 sentences in newstest 2015

• Two turkers per sentence
Human Evaluation

- We performed a small-scale human-evaluation using mechanical turk on the first 500 sentences in newstest 2015
- Two turkers per sentence
- The syntax-aware translations had an advantage over the baseline
Conclusions
Conclusions

• Neural machine translation can clearly benefit from target-side syntax
Conclusions

• Neural machine translation can clearly benefit from target-side syntax

Other recent work include:
• Eriguchi et al., 2017, Wu et al., 2017 (Dependency)
Conclusions

• Neural machine translation can clearly **benefit** from target-side syntax

Other recent work include:
• Eriguchi et al., 2017, Wu et al., 2017 (Dependency)
• Nadejde et al., 2017 (CCG)
Conclusions

- Neural machine translation can clearly **benefit** from target-side syntax

 Other recent work include:
 - Eriguchi et al., 2017, Wu et al., 2017 (Dependency)
 - Nadejde et al., 2017 (CCG)

- A general approach - can be **easily incorporated** into other neural language generation tasks like summarization, image caption generation...
Conclusions

• Neural machine translation can clearly **benefit** from target-side syntax

Other recent work include:
• Eriguchi et al., 2017, Wu et al., 2017 (Dependency)
• Nadejde et al., 2017 (CCG)

• A general approach - can be **easily incorporated** into other neural language generation tasks like summarization, image caption generation...

• Larger picture: **don’t throw away your linguistics!** Neural systems can also leverage symbolic linguistic information
Thank you!