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(3) We train a bigram soft pattern statistical model 

to capture the patterns inherent in a set of 
training examples. We employ the bigram 
model to identify good definition sentence 
candidates. 

This paper is organized as follows: In the next 
section, we present the overall architecture of our 
system. In Sections 3, 4 and 5, we respectively give 
the details of the above three features. In Section 6, 
we conclude the paper with discussion of future 
directions. 

2 System Overview 

In Figure 1, we illustrate the architecture of our 
QA system. We have leveraged our prior work in 
question analysis, document retrieval, passage 
retrieval to build the system. Our major 
modification lies in query expansion, semantic 
answer nugget extraction from web resources and 
the bigram model for definition sentence selection. 
In our comprehensive pre-processing step, we store 
a named entity profile and the full parsing of each 
article in the TREC corpus. The offline processing 
greatly accelerates answer extraction.  

Our framework functions as follows:  
Target analysis and document retrieval: First, the 
user submits a topic, e.g., “Aaron Copland”, to the 
system. Lucene1 is used to index the documents. In 
handling topics with qualifiers, for instance, “skier 
Alberto Tomba”, we rely on the Web to separate the 
qualifiers from the main topic words, e.g., “Alberto 
Tomba” in the  above example. Specifically, we 
calculate the pointwise mutual information (PMI)2 
between each pair of topic terms based on the hits 
returned by Google when using the topic terms as 
query. Terms with PMI values beyond a pre-
defined threshold are grouped together. To 
construct a suitable Lucene query, we first use 
logical “AND” to connect terms in the same group, 
and employ logical “OR” to connect different 
groups. To handle errors or infrequent expressions 

                                                      
1 http://jakarta.apache.org/lucene/docs/index.html 
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Figure 1. The illustration of the TREC QA system architecture  
 
in the given topics, we replace our original query by 
any query suggestion from Google3. For instance, 
our system automatically changes “Harlem Globe 
Trotters” to “Harlem GlobeTrotters” according to 
Google’s result. From the document retrieval on the 
NE pre-tagged corpus, we get a set of NE tagged 
relevant documents related to the given topic. 
 
• Factoid/List Question Analysis:  We first 
extract the expected answer NE type for each 
question. We then parse each question using 
Minipar (Lin, 1998) and store the dependency parse 
tree, which will be used for dependency based 
answer extraction. Finally, we parse the question 
using shallow semantic parser ASSERT (Pradhan et 
al., 2004) and also store the parse tree, which will 
be used for semantic answer nugget extraction from 
web resources. As some of the questions cannot be 
parsed by ASSERT (i.e empty output), we only 
perform semantic parsing on the subset of questions 
which have non-empty output. For the rest of the 
questions, we only perform dependency based 
answer extraction.  

                                                      
3 Defined as when Google returns : “Did you mean: 

XXX” 

• Query expansion and passage retrieval for 
factoid and list questions: We incorporate 
dependency relation analysis into query expansion, 
which will be introduced in Section 3. The method 
picks expansion terms from Google snippets 
according to the terms’ relation with the question 
terms in the snippets. For document ranking task 
this year, we select the top k expanded terms 
together with the non-trivial question terms to form 
the query. Our passage retrieval module also takes 
in expanded queries as input, and performs density-
based lexical matching to rank passages, which 
consist of a window of three sentences.  
 
• Answer extraction: We perform answer 
extraction on corpus documents as well as answer 
nuggets extraction on external web documents and 
select the final answer by answer projection (for list 
questions) and verification (for factoid questions). 
We use dependency based answer extraction to 
extract the answer string from the corpus. However, 
our preliminary experiment shows that this 
approach does not work well on web pages as they 
contain much more noisy data as compared to 
corpus. Therefore we propose the use of semantic 
based answer nugget extraction which is less 



sensitive to noise and we give the technical details 
in Section 4.  
 
• Definition generation: The relevant document 
set for the given topic is the basis for generating the 
definition for that topic. The definition generation 
module first extracts definition sentences from the 
document set. It identifies definition sentences 
using centroid-based weighting and then applies the 
soft-pattern model for matching these definition 
sentences. It also leverages existing definitions 
from external resources. We will discuss definition 
sentence extraction in Section 5. After redundancy 
removal, the module produces the definition for the 
topic. 

3 Query Expansion using Dependency 
Relations 

In TREC-13, we have proposed to use 
dependency relation matching to perform answer 
selection. However, our experiments showed that 
dependency relation matching does not perform 
well on short questions with very few (less than 
four) key words. Therefore we need to introduce 
additional contextual information for these short 
questions through query expansion. However, most 
query expansion methods only introduce new terms 
and cannot be directly applied to relation matching. 
Thus we propose a query expansion algorithm, 
which can expand new terms as well as relation 
paths based dependency relation analysis.  

To perform query expansion, we first send the 
queries to Google and use the top 50 returned 
snippets as a basis for query expansion. We parse 
the snippets using MiniPar and rank each non-stop 
token in the parsing tree of the snippet by its 
relation path to the tokens in the parsing tree of the 
question using the trained scores of individual 
relation. Finally, we select the top k relation paths 
in the snippets to combine with relation paths 
derived from the original questions to perform 
answer selection.  

We will next introduce our query expansion 
algorithm follow by details on how we train 
individual relation scores. 

3.1 Query Expansion  

Most query expansion techniques rank expansion 
terms using their co-occurrence with the query term 
by performing local context analysis (Xu et 
al.,1996). However, we observed that due to the 
noise on the web, the same technique cannot be 
applied to the Web. This is because some irrelevant 
terms, such as commercial related terms co-occur 
very frequently with the query terms in some 
snippets. This will mislead the query expansion 
algorithm to select them as relevant terms. 
Therefore we propose to use dependency relation 

between query terms and expanded terms as 
additional evidence to infer the relevance of the 
expanded term. Our general framework is similar to 
the local context analysis method, but with two 
major differences: (1) We perform query expansion 
using web resources rather than the top N passages 
retrieved within the corpus. (2) We score the 
expanded terms using their relation paths to query 
terms rather than statistical co-occurrence.  

Below are the steps we use to incorporate 
dependency relation analysis to expand a query Q 
based on web resource Dw. 

 
1)  We input each question as a query to Google 

and collect the top 50 returned snippets as a 
basis for query expansion. We combine the 50 
snippets as a whole document denoted as Dw 
and perform sentence splitting and dependency 
parsing using Minipar.  Each sentence Si in Dw 
becomes a dependency tree Ti after parsing. A 
dependency tree depicts the dependency 
relations between tokens of a sentence. For any 
two tokens (a token may either be a single word, 
a noun phrase or a verb phrase) in a sentence, 
there exists a path between them. The path 
consists of a series of intermediate nodes linked 
by labeled edges called relations. So we can 
define relation path in the form of (Start_Token, 
Rel1… Relk…Relm, End_Token). 

2) After step 1, we have N dependency parsing 
trees that corresponds to N sentences in Dw. The 
non-stop word tokens denoted as Tk in Dw are 
ranked according to the formula:  
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Tk is the token to be ranked, 

),,( stTkpath   is all the relation paths in the 
dependency parsing tree of sentence s with start 
token Tk and end token t, 

),,(_ stTkscorepath  is the score of  ),,( stTkpath

N is the number of sentences in Dw,
TkN is the number of sentences in Dw contains Tk, 

it
N is the number of sentences in Dw contains ti,

)(Re ilscore  is the score of individual relation 
which is obtained through training, 
δ  is set to 0.1 to avoid zero values. 
The above formula is a variant of the ranking 

formula of local context query expansion except 



that we use relation path similarity instead of co-
occurrence. 

Besides the tokens, we also rank the path 
associated with each token Tk and select the top 
ranked path with start token Tk to the expanded 
path of Tk. The selection formula is shown as 
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(3) We add top k tokens denoted as to 

the original query. We set the weight of original 
query terms to be 1.0 and the weight of ith 
expanded token to be (1-0.9*i/k). We use the 
expanded set to perform document and passage 
retrieval. We add 

}...{ 1 kTkTk

}1|)(_{ kiTkexpath i ≤≤  
to the set of paths derived from the original 
question to perform dependency matching for 
answer extraction. 

3.2 Training Individual Relation Weights 

As explained in the previous section, the 
relevance of the expanded token Tk is judged by its 
relation paths linking to the tokens in the query. 
And each relation path is a sequence of individual 
relations. Under the assumption that each relation 
appears independent of the other relations in the 
same path we have 
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Therefore for each type of relation in the 

dependency parsing tree, we need to 
train . We use TREC 8 and TREC 9, 
QA sentence pairs to perform training.  We denote 
each QA pair as (Q

)(Re ilscore

i,Ai). We then collect the top 50 
snippets returned by Google for each question and 
perform sentence splitting and dependency parsing 
and select the relevant paths from the set of parsing 
trees of the snippets. A path p in the snippets of Qi 
denoted as (Start_Token, Rel1… Relk…Relm, 
End_Token) is relevant if iATokenStart ∈_  
and .  iQTokenEnd ∈_
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Where  

pathrelevantli
C _Re ∈  is the number of  in 

relevant paths 
ilRe

N is the total number of relation types 
According to the formula, the score of the 

relation is proportional to the probability that it is in 
a relevant path. In other words the more often a 
“good” expansion term is inferred by the relation, 

the higher the score it will get. We normalize the 
score to be between 0 and 1 by dividing the score 
by the maximum score. 

3.3 Evaluation Results and Discussions 

We perform document and passage retrieval 
using the query expansion technique described 
above. Figure 2 shows the precision-recall graph of 
the document ranking task. 
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Figure. 2 Precision-recall graph of document 

ranking task (RUN NUSCHUAR1) 

4 Semantic Answer Nugget Extraction on the 
Web 

To facilitate the answering of topic-related 
factoid and list questions we use web resources as 
supporting documents to perform answer nugget 
extraction. We use http://www.answers.com/ as a 
search engine to get topic related web documents. 
And we perform semantic based answer nugget 
extraction on these documents. Finally, we project 
the answer nuggets back to corpus and verify the 
correctness of the answer nuggets. 

4.1 Collecting and Pre-processing of Web Pages 

For each topic, we input the topic as the query 
string to http://www.answers.com. The engine will 
return a resource page if the topic is in its database. 
Otherwise it will return the search result by Google. 
We use the resource page as our external web 
resource. We perform web page segmentation and 
classification on the resource page. For each 
resource page we classify the page segments into 
three classes, namely lists, descriptive data 
segments in natural language and commercial 
advertisements. We will remove all commercial 
segments as we will only use non-commercial 
segments to perform answer nugget extraction. 
Since the semantic answer selection works only on 
natural language sentences, we have to assign the 
surrounding texts as descriptive titles for tables and 
lists and use these titles to perform semantic 
matching with the questions.  

http://www.answers.com/


4.2 Semantic Answer Extraction 

Our goal is to match the semantic structure 
contained in the question with sentences from the 
web resources containing answer nuggets. After 
ranking the sentences we use the top k matched 
NEs (if the question has an NE typed answer target) 
or arguments (if the question has no NE typed 
answer target) as our candidate answer nuggets. 
There are two major challenges for this semantic 
matching. One is the different syntactic 
representations of the same semantic structure. The 
other is the use of different lexical terms to refer to 
the same concept. To tackle these problems, we use 
a shallow semantic parser to unify different 
syntactic representations into the same semantic 
representation, and we use WordNet and eXtended 
WordNet to find synonyms and semantically related 
verbs. 

4.2.1 Shallow Semantic Parsing 
To capture the semantic structures contained in a 

sentence, we need to identify verbs and their 
arguments. We also need to label the arguments 
with their semantic roles. This goal is achieved by 
performing shallow semantic parsing. The shallow 
semantic parser we use is the ASSERT parser, 
which is trained on the PropBank (Kingsbury et al., 
2002) corpus and uses support vector machine 
classifiers. 

PropBank was manually annotated with verb-
argument structures. Following the annotation rules 
in PropBank, the ASSERT parser tags the 
arguments of a verb with labels from ARG0 up to 
ARG5. Although such semantic roles are verb-
specific, some labels such as ARG0 and ARG1 tend 
to be general to all verb classes. For example, for 
any transitive verb, ARG0 is always the subject, 
and ARG1 is always the direct object. Besides these 
core arguments, ASSERT also tags adjunctive 
arguments. Examples are ARGM-LOC for locatives 
and ARGM-TMP for temporal. Figure 3 shows a 
sample output of ASSERT containing the parsing 
result of the question and several answer candidate 
sentences. 
 

 
 
 
 
 
 
 
 
 
 
 
To represent sentences in terms of the semantic 

structures, we define a semantic frame (or frame for 

short) as a verb-argument structure obtained from a 
sentence by the ASSERT parser. A frame consists 
of a verb, which we call the predicate, and a set of 
arguments. The arguments include both core 
arguments and adjunctive arguments. Each 
argument is associated with a label such as ARG0 
and ARG1 to indicate the semantic role of the 
argument. Therefore, a frame F can be represented 
as F=(v,A), where v is the predicate and A is the set 
of arguments. Each element a in A is a pair 
consisting the argument label and the argument text, 
represented by a=(l, T), where l is the label and T is 
the set of terms that the argument contains. Because 
a sentence may contain more than one semantic 
structure, a sentence is represented by a set of 
frames. 

4.2.2 Verb Expansion using WordNet 
Before we show our similarity scoring function, 

we first look at verb similarity scores. An answer 
passage can express the same semantic structure of 
the question with a different verb that is either of 
the same meaning as the verb in the question or 
semantically related to the verb in the question. 
Therefore, when matching semantic frames, we 
need to consider the semantic similarity between 
two verbs. We use WordNet and eXtended 
WordNet to measure this verb similarity. 

Our verb similarity function is very similar to the 
weighting function in Moldovan et al., 2002. 
Suppose we want to measure the similarity between 
two verbs v1 and v2. We start from one of the verbs, 
say, v1. This original verb is assigned a score of 1.   
We select the synset that corresponds to the first 
sense of v1 in WordNet. All words in this synset get 
the same score as the original word. From this 
synset, we follow the links to other synsets with 
relations such as hyponyms and entailment. We 
also follow the gloss links and reverse gloss links 
provided by the eXtended WordNet. A gloss link 
from synset S1 to synset S2 means S2 appears in the 
gloss of S2, and a reverse gloss link from synset S1 
to synset S2 means S1 appears in the gloss of S2. 

If from v1 we follow the relation R to a synset 
which contains the word w, then the score for the 
word w is RW×1 , where  is the weight for 
relation R. If we follow the link further from w to 
another synset which contains the word u by 
relation S, then the score of the word u 
is

RW

sR WW ××1 . Such expansion continues until we 
reach a certain depth. In our experiments, we set the 
depth to 2 because our preliminary experiments 
show that a deeper expansion does not improve the 
performance. The weights of the relations are the 
same as that used in Moldovan et al., 2002. We also 
penalize synsets that are more commonly used. 
Each synset gets a generality score G which is 
defined as 

Q: [ARG2-FROM Where] was [ARG1 the first Burger King 
restaurant] [TARGET opened ] 

P1: [ARG1 The first Burger King] [TARGET opens ] [ARGM-LOC in 
Miami] 

P2: [ARG0 Burger King Corp.] [TARGET announced ] [ARGM-TMP 
Thursday] [ARG1 it has canceled the rights of an Israeli company to 
operate a controversial franchise in the West Bank and ordered the 
restaurant to remove the Burger King brand from the site immediately] 

P2: Burger King Corp. announced Thursday [ARG0 it] has [TARGET 
cancelled] the rights of an Israeli company [ARGM-PNC to operate a 
controversial franchise in the West Bank] and ordered the restaurant to 
remove the Burger King brand from the site immediately 

P2: Burger King Corp. announced Thursday it has canceled the rights 
of an Israeli company to [TARGET operate ] [ARG1 a controversial 
franchise in the West Bank] and ordered the restaurant to remove the 
Burger King brand from the site immediately 

Figure.3 Sample Output By ASSERT Parser 
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where C is a constant, and  is the number of 
glosses in which the member of synset S appears. 
We set C=500. After taking into account this 
penalizing weight, the score of the word w is 
therefore , where  is the score of 

the previous word v,  is the relation connecting 

v and w, and  is the synset containing w. 
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After we expand the verb v1, we check if v2 

appears in the expanded set. If it does, then it is 
assigned the score as explained above. If not, v2 is 
assigned a score of 0. We denote this similarity 
score between v1 and v2 as . ),( 21 vvSimV

4.2.3 Semantic Matching 
First, we define the similarity scores between two 

frames. Let F1= (v1, A1), F2 = (v2, A2). We divide 
the similarity score into two components, one 
indicating the similarity between the verbs, and the 
other indicating the similarity between the 
arguments. 

),()1(),(),( 212121 AASimvvSimFFSim AV ×−+×= αα
    (4.2.3.1) 

where  denotes the similarity score 
between two argument sets, and 

),( 21 AASimA

α  is a weighting 
parameter that can be tuned. Our experimental 
results show that α  does not affect the 
performance much within a certain range. Therefore 
we fix α to be 0.5. 

The similarity between the two sets of arguments 
is measured at the lexical level. We do not use 
WordNet to expand the terms in the arguments 
because many of the arguments are named entities 
such as persons and organizations, for which 
finding similar terms is not so meaningful. 

To precisely match the argument sets of two 
frames, we should do pairwise matching of the 
arguments, that is, matching ARG0 in the first 
frame with ARG0 in the second frame, and ARG1 
in the first frame with ARG1 in the second frame, 
etc. However, we choose to do a fuzzy matching by 
considering all arguments in a frame together as a 
bag of independent terms. There are two reasons for 
doing fuzzy matching: (1) ASSERT often makes 
mistakes and therefore does not tag the arguments 
consistently, especially for adjunctive arguments, 
and (2) since we consider semantically related verbs, 
the semantic roles of the arguments may be 
different in different frames. Our preliminary 
experimental results also show that considering all 
arguments together is better than considering them 
separately. 

We use Jaccard coefficient to measure the 
similarity between two sets of arguments. Suppose 
we are to compute , where A1 and A2 
are two argument sets: 
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We then remove the stop words from T1 and T2. 
Let the sets of terms after stop word removal be T1’ 
and T2’. We then define the similarity between A1 
and A2 as 
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Both the question and the answer passages may 
contain more than one semantic frame. We compute 
pairwise frame similarity scores between the 
question and an answer passage, and pick the 
maximum score as the semantic similarity between 
the question and the answer passage. 

Finally, we use the semantic similarity scores to 
rank passages. For a question, we first use a density 
based passage retrieval method to retrieve the top 
100 passages. We than rank these 100 passages 
based on their semantic similarities to the question, 
as defined above. 

4.3 Answer Projection and Verification  
After we obtain the answer nuggets from the web, 

we need to project the answer nuggets back to the 
corpus. For list questions, we focus more on the 
recall so we only perform answer projection on the 
document level. For factoid questions after the 
projection step we use dependency relation based 
answer ranking to verify if the answer nugget from 
the web is correct in the local context. 

4.4 Evaluation Results 
Table. 1 shows the evaluation result for TREC-

14 factoid and list questions based on run 
NUSCHUA1.  
Table 1. Performance for factoid and list questions 

 NUSCHUA1 TREC 
Highest 

TREC 
Medium 

Accuracy 
for factoid 
questions 

0.666 0.713 0.152 

Accuracy 
for list 

questions 
0.331 0.468 0.053 

  We find that our performance for factoid questions 
is improved over our result last year. The main 



reason is that after query expansion our system is 
more capable of handling short questions. However, 
our semantic answer nugget selection does not 
perform very well on list questions. The major 
problem is due to the recall of the semantic parser 
and the strict matching criteria we imposed on the 
frame matching, which will reduce the recall of 
finding answers for list question. 

5 Definition Generation for Topics 

We consider it important to identify precise and 
complete definition sentence for topics because it 
facilitates the answering of factoid and list 
questions, and more importantly, it helps to answer 
the Other questions. In TREC-13, we applied a soft 
pattern model to boost the recall of definition 
sentence retrieval. This year, we use the improved 
bigram soft pattern model (Cui et al., 2005), and 
combine it together with external knowledge, to 
identify precise definition sentences. Note that for 
external knowledge, we choose to utilize specific 
websites rather than general search engines, so that 
we get more precise results. 

5.1 Statistical Ranking of Definition Sentences 
with External Knowledge 

To ensure recall, for each topic, we construct 
two data sets as the basis for selecting definition 
sentences: one based on the TREC corpus and the 
other from external knowledge. The TREC set is 
constructed by relevant documents determined by 
the document retrieval module using the topic as 
the query. We retrieve up to 800 documents for 
each topic. These documents are split into sentences. 
To construct the external knowledge set, we 
accumulate existing definitions for the topics from 
http://www.answers.com/. The definitions are 
downloaded through pre-written wrappers for the 
website.  

We first perform statistical weighting of 
sentences on both of the data sets to find the 
sentences relevant to the given topics.  When 
ranking sentences with corpus word statistics, we 
employ the centroid-based ranking method, which 
has been used in other definitional QA systems (e.g., 
Xu et al., 2003). We select a set of centroid words 
(excluding stop words) which co-occur frequently 
with the search target in the input sentences. To 
select centroid words, we use mutual information to 
measure the centroid weight of a word w as follows: 
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where Co(w, sch_term) denotes the number of 
sentences where w co-occurs with the search term 
sch_term, and sf(w) gives the number of sentences 

containing the word w. We also use the inverse 
document frequency of w, idf(w)4, as a measure of 
the global importance of the word. Words whose 
centroid weights exceed the average plus a standard 
deviation are selected as centroid words.  

The weighting of centroid words can be 
improved by using external knowledge. We 
augment the weight of the centroid words which 
also appear in the definitions from the external 
knowledge data set. We form centroid words into a 
centroid vector, which is then used to rank input 
sentences by their cosine similarity with the vector. 

5.2 Generic Soft Pattern Model 

After performing the statistical ranking step 
above, we have a list of ranked sentences with 
definition sentences ranked highly. However, not 
all sentences that are ranked highly are definition 
sentences, although all of these sentences are 
related to the topic. 

In most TREC QA systems, definition patterns 
are manually constructed in a labour intensive 
manner, and are usually in the form of regular 
expressions. Such patterns require exact matching 
and hence we call them hard patterns. We observe 
that definition sentences such as “… the weed 
kudzu, a vine planted for soil stabilization that has 
grown like wild ...” follows certain patterns, but 
often with minor variations for a variety in writing 
styles. Hard patterns usually fails in matching such 
linguistic variations in vocabulary and syntax, and 
learned hard patterns cannot match definition 
sentences that are not seen in the training data. 
Therefore we propose and employ a soft pattern 
model discussed in (Cui et al., 2004), and further 
improved it in (Cui et al., 2005) to produce a 
theoretically sound generic soft pattern model. In 
(Cui et al., 2005), a bigram soft pattern model and a 
profile HMM soft pattern model are proposed, and 
we apply the bigram soft pattern model here 
because the profile HMM model requires more 
training instances to converge. 

For a definition pattern containing the search 
target, we consider the tokens on the left of the 
search target, left_seq, separately from those on the 
right of the search target, right_seq, and compute 
their respective scores separately. We combine the 
two scores using linear interpolation: 
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(5.2.1) 
where µleft and µright are the bigram soft pattern 
models for the left and right sequences respectively. 

                                                      
4 We use the statistics from the Web Term Document 

Frequency and Rank site to approximate words’ IDF 
(http://elib.cs.berkeley.edu/docfreq/) 



In the original bigram soft pattern model used 
in TREC-13, the probability of a sequence is 
computed simply as a product of probabilities of 
bigrams. For our improved bigram soft pattern 
model, we apply linear interpolation of unigrams 
and bigrams to represent the probability of bigrams 
to smooth the distribution to generate more accurate 
statistics for unseen data, as well as to incorporate 
the conditional probability of individual tokens 
appearing in specific slots. For a given bigram 
model µ with slots S1 to SL, a sequence of pattern 
tokens t1 to tL is modeled as follows: 
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(5.2.2) 
where P(ti | Si) is the conditional probability of 
token ti appearing in slot Si. The unigram and 
bigram probabilities are estimated using maximum 
likelihood estimation, and Laplacian smoothing is 
applied to these probabilities. For more details on 
our bigram soft pattern model, please refer to (Cui 
et al., 2005). 

5.3 Manually Constructed Patterns 

On top of centroid-based weighting and soft 
pattern matching, we also optionally use a set of 
manually constructed patterns for matching 
definition sentences. This set of patterns includes 
the subset of patterns we used for TREC-12 that are 
used in TREC-13. The set consists mainly 
consisting of appositives and copulas patterns, 
which are high-precision patterns represented in 
regular expressions, such as “<SEARCH_TERM> 
is DT$ NNP”. For this year’s TREC QA, we used 
additional high-precision patterns used to match 
numeric data, such as years and distance units. 

Such hard matching patterns are used on top of 
the soft patterns because a small number of good 
definition sentences are dropped due to the imposed 
cut-off of ranking scores by centroid-based 
weighting and soft pattern matching, and we want 
to capture these sentences. Also, sentences 
containing numerical data are presented in a large 
number of formats and are not given very high 
scores by the soft pattern models. 

Hence, the system works by first ranking all the 
sentences using centroid-based ranking and soft 
pattern matching, and then taking the top ranked 
sentences as candidate definition sentences. 
Optionally, for boosting the recall of the definition 
sentences, it then examines those lower ranked 
sentences which are not included in the candidate 
definition sentences, and adds those sentences 
matched by any of the manually constructed 
patterns into the list of definition sentences. 

5.4 Redundancy Removal 
Like in TREC-13, this year’s TREC QA 

guidelines requires that systems remove nuggets 
that are already covered in the topic-related factoid 
and list questions from their list of definition 
nuggets. Our system performs a two-stage 
redundancy check when selecting definition 
sentences into the final answer. First, we define the 
list of sentences used to answer the factoid and list 
questions for the same topic as factoid sentences. 
For selecting N sentences for the final answer, we 
apply the following selection process on our ranked 
list of sentences: 
1. Add the first sentence in the ranked list of 

sentences into the list of answer sentences. 
2. Let the next sentence in the ranked list of 

sentences be next_stc. 
a. If there is a factoid sentence factoid_stc 

such that sim(next_stc, factoid_stc) ≥ 0.85, 
skip to step (3). 

b. If there is already a selected answer 
sentence answer_stc such that sim(next_stc, 
answer_stc) ≥ 0.70, skip to step (3). 

c. Otherwise, we add next_stc to the list of 
answer sentences. 

3. If the list of answer sentences already has N 
sentences, we terminate the process. Otherwise, 
go back to step 2. 
Here, we measure the similarity between two 

sentences using simple cosine similarity with each 
term weighed by its inverse document frequency 
(IDF). Since the answers to factoid or list questions 
tend to account for very small fraction of the 
sentences, we apply a stricter similarity threshold 
on these sentences. 

For this year, we choose to return only full 
sentences as our definition nuggets, without 
attempting to extract the relevant substrings of the 
sentences. This is unlike TREC-13, where heuristic 
rules were used to extract only the relevant parts, 
such as the appositive part. The reason is that the 
context of the sentence is often lost when such 
extraction is done. 

5.5 Evaluation Results 
This year, we submitted three runs for the Other 

questions. The first run produces 14 definition 
sentences using only soft pattern matching. The 
second run produces 12 definition sentences using 
soft pattern matching and 2 using the hard pattern 
matching rules as used in TREC-13, but not 
including the numeric ones. The third run produces 
12 definition sentences using soft pattern matching 
and 6 using the hard pattern matching rules, 
including the numeric ones. The average F3-scores 
are shown in Table 2. 

 
 



Table 2. Performance for Other questions 
 NUSCHUA1 NUSCHUA2 NUSCHUA3

Avg F3-score 0.195 0.193 0.211 
From the scores, we see that our bigram soft 

pattern model performs as well as the manual non-
numeric hard pattern matching rules, which already 
has a performance that is much better than the 
median average F3-score of 0.156 across all the 71 
runs. However, since number matching is a hard 
problem in general, adding some hard numeric 
matching rules to augment the soft pattern model in 
our third run actually boosts the results, even 
though the returned answers are much longer now. 

This year, the topics are extra challenging for 
answering the Other questions, reflected by the 
across-the-board low scores, because a large 
number of the topics are events. A reason is 
because events can span across a long period of 
time and involve a large number of entities. At the 
same time, having to exclude all definition nuggets 
that have been covered by the topic-related factoid 
and list questions continue to make answering the 
Other questions difficult. We continue to observe 
that most of the important aspects of a topic have 
already been asked in the factoid and list questions, 
leaving little else for answering the Other question. 

6 Conclusion 

We have reviewed the newly-adopted techniques 
in our QA system. They include using dependency 
relation analysis for query expansion, using 
semantic relation analysis for answer nugget 
extraction from the web and using bigram soft 
pattern model for definition sentence selection. 
While these techniques have improved our previous 
QA system, we note that more improvements may 
be pursued in future work. First, the recall of 
semantic parsing is not high enough to cover most 
of the questions. Therefore to increase the recall of 
semantic parsing will be one of our future works in 
applying semantic relation analysis to QA. 
Secondly, more experiments should be conducted to 
figure out the effect of query expansion on the 
specific type of questions, in particular for 
questions with different lengths. Third, further work 
needs to be done for answering Other questions for 
events. Also, there is a need to find ways to 
integrate numberic matching into the soft pattern 
models. 
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